On perturbations of matrix pencils with real spectra. II

نویسندگان

  • Rajendra Bhatia
  • Ren-Cang Li
چکیده

A well-known result on spectral variation of a Hermitian matrix due to Mirsky is the following: Let A and à be two n×n Hermitian matrices, and let λ1, . . . , λn and λ̃1, . . . , λ̃n be their eigenvalues arranged in ascending order. Then ∣∣∣∣∣∣diag (λ1 − λ̃1, . . . , λn − λ̃n)∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣A− Ã∣∣∣∣∣∣ for any unitarily invariant norm ||| · |||. In this paper, we generalize this to the perturbation theory for diagonalizable matrix pencils with real spectra. The much studied case of definite pencils is included in this.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On perturbations of matrix pencils with real spectra, a revisit

This paper continues earlier studies by Bhatia and Li on eigenvalue perturbation theory for diagonalizable matrix pencils having real spectra. A unifying framework for creating crucial perturbation equations is developed. With the help of a recent result on generalized commutators involving unitary matrices, new and much sharper bounds are obtained.

متن کامل

On Perturbations of Matrix Pencils with Real Spectra

Perturbation bounds for the generalized eigenvalue problem of a diagonalizable matrix pencil A-ÀB with real spectrum are developed. It is shown how the chordal distances between the generalized eigenvalues and the angular distances between the generalized eigenspaces can be bounded in terms of the angular distances between the matrices. The applications of these bounds to the spectral variation...

متن کامل

Structured Eigenvalue Backward Errors of Matrix Pencils and Polynomials with Palindromic Structures

We derive formulas for the backward error of an approximate eigenvalue of a ∗palindromic matrix polynomial with respect to ∗-palindromic perturbations. Such formulas are also obtained for complex T -palindromic pencils and quadratic polynomials. When the T -palindromic polynomial is real, then we derive the backward error of a real number considered as an approximate eigenvalue of the matrix po...

متن کامل

Parameter-Dependent Rank-One Perturbations of Singular Hermitian Or Symmetric Pencils

Structure-preserving generic low-rank perturbations are studied for classes of structured matrix pencils, including real symmetric, complex symmetric, and complex Hermitian pencils. For singular pencils it is analyzed which characteristic quantities stay invariant in the perturbed canonical form, and it is shown that the regular part of a structured matrix pencil is not affected by generic pert...

متن کامل

Linear Perturbation Theory for Structured Matrix Pencils Arising in Control Theory

We investigate the effect of linear perturbations on several structured matrix pencils arising in control theory. These include skew-symmetric/symmetric pencils arising in the computation of optimal H∞ control and linear quadratic control for continuous and discrete time systems. 1. Introduction. In this paper we study the effects of linear perturbations on the spectra of structured matrix penc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 1996